【学术快报】李毓龙实验室合作实现新型红色荧光多巴胺探针和第二代绿色荧光多巴胺探针的开发及应用
多巴胺(Dopamine, DA)作为大脑中重要的神经递质,与运动控制、动机、学习、记忆、情绪等生理过程,以及多种神经系统疾病如帕金森病、成瘾、精神分裂症、多动症和创伤后压力综合征等密切相关。为更好地研究多巴胺在生理和病理过程中的作用,研究人员需要一种能够实时、灵敏、特异地检测多巴胺的工具,以研究在活体模式生物中、复杂行为模式下多巴胺信号的动态变化情况。自2018年起,北京大学李毓龙实验室开发了一系列检测神经递质的荧光探针,即GRAB探针系列,其中即包括多巴胺探针(GRABDA)。该探针克服了已有多巴胺检测手段中时空分辨率低、分子特异性差等诸多问题,已被广泛地应用于活体果蝇、小鼠、斑马鱼、斑马雀等模式生物 [1-4]。
2020年10月22日,北京大学李毓龙实验室、纽约大学Dayu Lin实验室和美国国立卫生研究院Guohong Cui实验室合作在Nature Methods杂志在线发表了题为“Next-generation GRAB sensors for monitoring dopaminergic activity in vivo”的研究论文,报告了新型红色荧光多巴胺探针和第二代绿色荧光多巴胺探针的开发及应用。
研究者在发表的第一代探针的基础上,对多巴胺探针进行了进一步的改造和优化。本工作的亮点之一为开发出新型的具有红色荧光的多巴胺探针(rGRABDA1m和rGRABDA1h),可与其他绿色荧光探针(如钙离子探针,神经递质探针等)共同使用,实现多种信号的同时记录。工作亮点之二为优化出具有更高灵敏度及成像信噪比的第二代绿色荧光多巴胺探针(GRABDA2m和GRABDA2h)(图1),其较第一代探针在反应幅度上提升了2-3倍。
针对新一代多巴胺探针,研究者在细胞、脑片、果蝇(图2)、小鼠(图3)中对其表现进行了系统地刻画,并通过一系列对照实验对探针信号的特异性进行了验证,为该工具的未来应用提供了详尽的信息。应用新一代灵敏的多巴胺探针,研究者在清醒的、自由活动的动物深部脑区中记录了多巴胺的动态变化,并研究了多巴胺随着动物不同精细行为过程发展而产生的变化(图3)。
图1. 新型红色荧光多巴胺探针和第二代绿色荧光多巴胺探针在HEK293T细胞中的荧光响应情况
图2. 通过双光子成像法检测果蝇大脑中由气味刺激和电刺激引发的多巴胺释放
图3. 通过光纤记录法检测小鼠交配行为中NAc脑区的多巴胺动态变化情况
这些新型多巴胺探针不仅为多巴胺功能的研究提供了重要工具,也为将来开发具有多种光谱范围以及更高信噪比的神经递质探针提供了宝贵经验。“基于G蛋白偶联受体”这一探针开发策略已被成功应用于开发多种神经递质探针,包括乙酰胆碱探针 [5,6]、去甲肾上腺素探针 [7]、腺苷探针 [8]、五羟色胺探针 [9]、内源大麻素探针[10]、美国加州大学戴维斯分校Lin Tian实验室开发的多巴胺探针等 [11,12]。我们期待未来将会有更多具有更高信噪比、多种光谱范围的神经递质探针,推进大脑神经递质系统功能的研究。
参考文献
1. Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e9 (2018).
2. Tanaka, M., Sun, F., Li, Y. & Mooney, R. A mesocortical dopamine circuit enables the cultural transmission of vocal behaviour. Nature 563, 117–120 (2018).
3. Zhou, M. et al. Suppression of GABAergic neurons through D2-like receptor secures efficient conditioning in Drosophila aversive olfactory learning. Proc. Natl Acad. Sci. USA 116, 5118–5125 (2019).
4. Handler, A. et al. Distinct dopamine receptor pathways underlie the temporal sensitivity of associative learning. Cell 178, 60–75.e19 (2019).
5. Jing, M. et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36, 726–737 (2018).
6. Jing, M. et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nature Methods (2020): 1-8.
7. Feng, J. et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102, 745–761.e8 (2019).
8. Peng, W. et al. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 369.6508 (2020).
9. Wan, J. et al. A genetically encoded GRAB sensor for measuring serotonin dynamics in vivo. bioRxiv (2020).
10. Dong, A. et al. A fluorescent sensor for spatiotemporally resolved endocannabinoid dynamics in vitro and in vivo. bioRxiv (2020).
11. Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, 6396 (2018).
12. Patriarchi, T. et al. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nature Methods (2020): 1-9.
即刻点击“阅读原文”,查看论文详细内容。
研究组介绍
李毓龙
北京大学麦戈文脑科学研究所PI
北京大学生命科学学院研究员
北大-清华生命科学联合中心PI
实验室研究领域:
人的大脑由数十亿的神经元组成,后者又通过数万亿的突触组成复杂的神经网络。不同种类的神经元经过或远或近的投射,通过突触与其他神经元进行信息交流,实现感知觉、决策和运动等高级神经功能。
研究大脑的最大挑战在于脑的高度复杂性。我们实验室集中在神经元通讯的基本结构突触上,从两个层面上开展研究:一是开发前沿的工具,即开发新型成像探针,用于在时间和空间尺度上解析神经系统的复杂功能;二是借助先进的工具探究突触传递的调节机制,特别是在生理及病理条件下对神经递质释放的调节。
具体而言,对于工具开发,我们集中于:
1、结合光遗传学和荧光成像,无损伤性的研究神经元之间的电突触连接。电突触的异常可导致耳聋、癫痫、脑部肿瘤和心脏功能异常等疾病。
2、开发可遗传编码的检测神经递质/调质的荧光探针。神经递质/调质是神经元化学突触传递的关键介导分子,与感知、学习和记忆以及情绪密切相关。
利用上述荧光探针,我们的功能性和生理性的研究集中于:
1、结合生物信息学、分析化学、生物化学、生理学和成像学方法,系统地探索和鉴定潜在的新型小分子神经递质。
2、研究神经元中重要的分泌性囊泡“高密度核心囊泡”的蛋白质组学,分析囊泡内的神经肽组成。这些神经肽对于调节食物摄取、侵犯性行为和生物节律有重要的调节作用。
3、寻找上述新型化学递质/调质小分子的对应受体,即寻找“孤儿”受体的配体。
4、结合双光子成像和可遗传编码的荧光探针,使用果蝇和小鼠作为模式生物,研究嗅觉传导或睡眠过程中脑的工作机制。
北京大学IDG麦戈文脑科学研究所
脑科学讲座 | 学术笔记 | 研究分享
长按识别二维码,获取更多精彩内容!
官方微信公众号:Brain-Research
官方网站:http://mgv.pku.edu.cn/